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Motivation

What is not surrounded by
uncertainty cannot be the
truth.

Richard Feynman
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Uncertainty: What is it and what are its properties

Uncertainty: Where does it come from in the context of simulations
that cannot be run often enough to create an ensemble
Uncertainty: How does it propagate?

Uncertainty: A working definition for purposes of visualization
Density: A key idea borrowed from continuum mechanics
Uncertainty: From value to visualization and back again
Requirements for successful, effective visualization (of uncertainty)
Depicting density

From glyph to field via representative values that explain data

10 Several methods for visualizing uncertainty in 2D,3D, .

11. Future
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Effective Unce
Visualization

2,3,4,4+ Dimensions
ot interfere or distract from underlying visualization of data
with
data set size,
resolution
its
drill down,
query, and




What is Uncertainty?

Uncertainty is The result of
selecting one option from a set of
E@qually plausible alternatives.

Quir goal is To meld stTatisTical
Thinking with visualizatTion practice
To alloww The Tracking of howw
uncertainty arises, propagates and
aftects computed results

One critical quesTion is how
uncertainty can be incorporated or
extracTed from very tew (-1)
simulation
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Quantitative Uncertainty

We are all certain about one thing-that there exists something called
uncertainty.

For the most part, for most people, uncertainty exists almost entirely
in the range conaining the final outcome of the simulation.

For our purposes, we shall use this partial and almost begrudging
consensus to define our uncertainty.

S = 9(r, 1))

For any parameter, _ _
so the uncertainty L 18 such that:

P(9el9,t0,])20.5

That is, the uncertainty has the same units and
properties as the parameter
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Origins of Uncertainty in Simulation

Simulation is overwhelmingly deterministic (except for
application of Monte Carlo methods). Where is the
uncertainty in arithmetic? We can’t run our models more than
a few times, not even for a rudimentary LHS design.

Uncertainty is certainly present in:
*Boundary and initial conditions
*Material properties

*Finite sampling

[t also arises whenever a particular algorithm is used as in:
*Interpolation
*Quadrature
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Visualizing Ultrascale Data, Cautionary

It is common knowledge that the chief block to visualizing
today’s ultrascale data is that the I/O channel from disk to
screen is overwhelmed, massively.

And, we have just doubled the load, adding the uncertainty at
each point to the parameter in question. Are we CRAZY????

We assert that when there are more points than pixels, then the concept of
point has neither meaning nor utility.

We cannot continue to cede the decision of how many
micropolygons can be rendered and then transformed to a single
colored pixel to the GPU because it was designed to the
specifications of the special effects, gaming, and entertainment
industries, all devoted to the creation and maintenance of
illusion.
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point to field, via d

Replace notion of ¢(X), the val

with a continuum field ® and sampled (
a window or kernel « (x): jiooo k(x)dx=1

$(x) = [ ®(y)x(x—y)dx



Size Matters

xed volume V, find amount of ¢ in V

Define fixed quantity an

Find V, : jpwdv ~C,
V.

contains the same mass, . __ (]
and
nges i=1

V.= D (space fi



Basic Kalmamn Filiar
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Implementation Impediment

If Z:J'pwdv = Total mass of uncertainty stuff in D,

1)

Can I find K regions V:

a)C,=[p,dV =Z/K =C V {/}
[/i

nyUv -

1

c)Centroid of V remains in V

N UVENCOAT



erative Refineme

For K polygons {V.} and points {

Compute how area {A, = Idv} and p

oA

change as {p,} vary ¢, = —

op .

al solution is found |

tive refinement.

hod borrows much =
Minimize:

var(p,) Equalize conte

X(oV,) Boundary

var(p-p)° hete




alization Viewpoints

A Next Step: Visualizing Errors and Uncertainty

en was the last time you saw an isosurface with
error bars or streamlines with standard devia-
tions or volume visualizations with representations of
confidence intervals? With few exceptions, visualiza-
tion research has ignored the visual representation of
errors and uncertainty for 3D visualizations. However,
if you look at peer-reviewed science and engineering
journals, you will see that the majority of 2D graphs
represent error and/or uncertainty within the experi-
‘mental or simulated data. Why the difference? Clearly,
if it's important to represent error and uncertainty in
2D graphs, then it's equally important to represent error
and uncertainty in 2D and 3D visualization,
‘The possible detriment caused by the failure to rep-
resent errors and uncertainties in 3D visualizations
became clear to us a couple of years ago when neuro-

tain representations of error and uncertainty is that the
visualization research community has not made such
representations a priority. To take visualization
research—and its usefulness to researchers in science,
engineering, and medicine—to the next level, the visu-
alization research community needs to make visually
representing errors and uncertainties the norm rather
than the exception.

What's been done so far

Fortunately, a few visualization researchers have
started thinking about 3D visual representations of
errors and uncertainties, the sources of which can
include uncertainty in

W acquisition (instrument measurement error, numer-

dition 2003

Leading Edge

How do we understand and visualize uncertainty?

Moo Samesinss, Aushralian National University, Canberta
Canoive Beawem, Arizona State University, Tempe, USA
Freoenn J. Smows, University College. London, UK.

Roe Swieoes, Colorado School of Mines, Golden, USA

Gevphy:aicish are often concerned with reconstructing
subsurface properties using observations collected at or
near the surface, For exnmple, in seismic migration, we
attempt to reconstruct subsurface geometry from surface
seismic recordings, and in potential field inversion, obser-
vations are used to map electrical conductivity or density
variations in geologic layers. The procedure of inferring
information from indirect observations is called an inverse
problem by mathematicians, and such problems are com-
mon in many areas of the physical sciences. The inverse prob-
lem of inferring the subsurface using surface observations
has a corresponding forward problem, which consists of
determining the data that would be recorded for a givensub-
surface configuration. In the seismic case, forward model-
ing involves a method for calculating a synthetic
seismogram, for gravity data it consists of a computer code
to compute gravity fields from an assumed subsurface den-
sity model. Note that forward modeling often involves
assumptions about the appropriate physical relationship
between unknowns (at depth) and observations on the sur-
face, and all attempls to solve the problem at hand are lim-
ited by the accuracy of those assumptions. In the broadest
sense then, exploration geophysicists have been engaged in
inversion since the dawn of the profession and indeed algo-
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Monte Curlo ensemble
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Effective Unce
Visualization

in 2,3,4,4+ Dimensions
not interfere or distract from underlying visualization of data
2s with
data set size, So, how did we do,
i tion admittedly accordinc

S drill down, our ow corecar

* query, and
analysis




ay Points & Conceptua

ty is the side-effect of arbitrary selection from ¢
inty is measured same as the underlying parameter
IS much to be gained and very little to be lost in replaci
lue at a point with that of pdfin a region.

ity of a field should therefore replace discrete samples.
ity and concentration can be conveyed by displaying the s
d to enclose regions containing the same amount of par
essellation into regions of equal content is best done by



